On the calculation of the Fourier transform of a polygonal shape function

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1989 J. Phys. A: Math. Gen. 22 L671
(http://iopscience.iop.org/0305-4470/22/14/003)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 01/06/2010 at 06:45

Please note that terms and conditions apply.

LETTER TO THE EDITOR

On the calculation of the Fourier transform of a polygonal shape function

Fu-Lai Chu and Chi-Fang Huang
Department of Electrical Engineering, Tatung Institute of Technology, 40 Chung-Shan North Road, 3rd Sec., Taipei, Taiwan, Republic of China

Received 3 April 1989

Abstract. This letter gives a simple but creative closed-form solution of the Fourier transform of a polygonal shape function.

The aim of this letter is to provide a new closed-form solution for the two-dimensional Fourier transform of an uniform distribution over an N-sided polygon. The Fourier transform of shape functions is often encountered in optics [1] and electromagnetism [2].

Considering a polygon Σ in the $x y$ plane as shown in figure 1, the shape function Σ is defined as

$$
s(x, y)= \begin{cases}1 & \text { if }(x, y) \text { is in } \Sigma \tag{1}\\ 0 & \text { otherwise }\end{cases}
$$

Then its two-dimensional Fourier transform is

$$
\begin{equation*}
s(u, v)=\int_{-\infty}^{\infty} \int_{-\infty} s(x, y) \exp [\mathrm{j}(u x+v y)] \mathrm{d} x \mathrm{~d} y . \tag{2}
\end{equation*}
$$

Figure 1. N-sided polygon. Line segment $C_{n}: x=a_{n} y+b_{n}$; refer to the text for parameters a_{n}, b_{n}.

The key problem is the determination of $S(u, v)$ from the coordinates $\left(x_{n}, y_{n}\right)$ of each corner of the polygon Σ. Lee and Mittra [3] had given a closed-form solution of this issue. Unfortunately, the derivation of their result is very complex to follow. Alternatively, this letter gives a resourceful and succinct procedure, based on Stokes' theorem, to solve the same problem.

Define

$$
\begin{equation*}
A \triangleq \frac{1}{j u} \exp [j(u x+v y)] a_{y} . \tag{3}
\end{equation*}
$$

Then (2) can be written

$$
\begin{equation*}
S(u, v)=\iint_{\Sigma} \nabla \times A \cdot \mathrm{~d} \boldsymbol{S} \tag{4}
\end{equation*}
$$

where $\mathrm{d} \boldsymbol{S}=\mathrm{d} x \mathrm{~d} y \boldsymbol{a}_{z}$.
Let $\mathrm{d} l=\mathrm{d} x a_{x}+\mathrm{d} y a_{y}$ in figure 1 ; then, by Stokes' theorem

$$
\begin{equation*}
\iint_{\Sigma} \nabla \times \boldsymbol{A} \cdot \mathrm{d} \boldsymbol{S}=\oint_{C} \boldsymbol{A} \cdot \mathrm{~d} \boldsymbol{l} \tag{5}
\end{equation*}
$$

in which C is the boundary contour of Σ, and the line integral in (5) results in the closed-form solution:

$$
\begin{align*}
S(u, v) & =\sum_{n=1}^{N} \int_{C_{n}} \boldsymbol{A} \cdot \mathrm{~d} \boldsymbol{l} \\
& =\sum_{n=1}^{N} \frac{\exp \left(\mathrm{j} b_{n} u\right)\left\{\exp \left[\mathrm{j}\left(v+a_{n} u\right) y_{n+1}\right]-\exp \left[\mathrm{j}\left(v+a_{n} u\right) y_{n}\right]\right\}}{(\mathrm{j} u) \mathrm{j}\left(v+a_{n} u\right)} \tag{6}
\end{align*}
$$

where

$$
\begin{equation*}
a_{n}=\frac{x_{n+1}-x_{n}}{y_{n+1}-y_{n}} \quad \text { and } \quad b_{n}=x_{n}-a_{n} y_{n} \tag{7}
\end{equation*}
$$

are determined from the coordinates of the two corners of the line $x=a_{n} y+b_{n}$ of side n of the polygon in figure 1. The parameter a_{n} is the slope inversion of the line segment C_{n}. The closed-form solution appearing in (6) is much simpler than (6) in [3].

Although the Fourier transform solution presented is derived from a polygonal shape function, it can be applied to arbitrary shapes with continuous boundaries by approximating the curves by a finite number of straight-line segments.

References

[1] Kirkby P A and Thompson G H B 1976 J. Appl. Phys. 474578
[2] Lee S W, Zarrillo G and Law C L 1982 IEEE Trans. Antennas Propagat. AP-30 904
[3] Lee S W and Mittra R 1983 IEEE Trans. Antennas Propagat. AP-31 99

